Resonance: Key Concepts

Frequency

The frequency of the wave is how many cycles pass by in a given time period. What size wavelength will lead to higher frequency?

Constructive Interference

If the peaks and troughs of waves are aligned, two waves can add together. If they don't align, the waves can cancel each other out.

Sound Waves

Sound is a pressure wave that compresses air molecules. How do you think the frequency of a sound wave changes what we hear?

Using Resonance

Particles naturally vibrate at certain frequencies. If we send in signals with a broad range of frequencies, the one that is equal to the particle's resonant frequency will be intensified and others will cancel out. We can learn about quantum particles this way.

Amplitude

The frequency of the wave is how many cycles pass by in a given time period. What size wavelength will lead to higher frequency?

Wavelength

1 cycle

Time

If the peaks and troughs of waves are aligned, two waves can add together. If they don't align, the waves can cancel each other out.

Compressed Region

Individual Air Molecules

Range of frequencies

Particle's resonant frequency is amplified.

Particle's resonant frequency is amplified

Using Resonance

Particles naturally vibrate at certain frequencies. If we send in signals with a broad range of frequencies, the one that is equal to the particle's resonant frequency will be intensified and others will cancel out. We can learn about quantum particles this way.

Compressed Region

Individual Air Molecules

Range of frequencies

Particle's resonant frequency is amplified.