Light-Pipes: Controlling Light

The Big Idea

1) Light usually goes in a straight line, but we can control where it goes using reflections.

2) All our data (internet, TV etc.) is sent this way, by light pulses in optical fibers.

Background - for Leaders
(Refer to printouts at table)

- All our internet, phone, television is sent around the world using pulses of light.
 - The plugs in your house are metal (ex. TV coaxial cable), or your cell phone sends radio to an antenna somewhere – these then connect to Verizon/Cox’s world-wide fiber-optic network.
 - The light is guided along “optical fibers” – there’s a world-wide network of these to send information anywhere.
 - Electrical signals get very weak after long distances
 - Guided Light can go much further without losing much brightness.
 - Main Question: How do we get the light to go where we want?

Cell Phone Antenna

Undersea fiberoptic
The Hook

(less than 5 min)

Audience Interactions:

• What happens when you send a text/email? (Refer to printout at their tables)
 – How does information Physically go from my phone/computer to someone else’s?
 ▪ Page 1 of Printout
 – All our data is sent using pulses of light
 ▪ Page 2 of Printout
 – Cell Phone Antennas, TV Cables eventually connect to the worldwide fiber-optic network w/ Lasers

• What is special about a “Laser”:
 – Audience Q: How is a laser pointer different than a flashlight?
 1. Shoot laser across room
 2. Optional: Show SmartPhone flashlight for comparison
 – Answer A laser is:
 1. Very Bright
 2. Goes in one straight line
 3. One pure color (white is many colors!)

• How do we control light over long distances?
 – The laser pointer always shoots straight! How would you shoot a laser to England?

IMPORTANT NOTES

• Keep an eye on the time!
 – The first two demonstrations can only take 10 min total!

• Use parents as responsible laser-wielders when in doubt.
 – Be quick to give a parent sole laser-wielding power if needed.
Reflection Tank (5 min)

Procedure:
1) Turn off lights
2) Shoot green laser into tank
 - Bounce off bottom such that light also bounces off the top, like in picture.
3) We can use reflections to guide the light

Questions to ask
- What do you notice about the light travelling through the water tank?
 - Why do you think this is happening?
- How is the light from the laser pointer different from that of a flashlight?

Explanation:
- When light goes from one material to another, there is usually Reflection (bounces off) AND Transmission (passes straight through).
- If we find an angle where most/all is reflected, we can make the light go where we want it to.
Optical Fibers (5 min)

Materials

- Fiber Optic cable bundle
 - One end for Leaders, other end for Audience
- Laser Pointer (Green for better visibility)

To Do:

1. Assign “Audience-End” cables to family representatives
2. Hold the “Leader” end of cables.
3. Explain that a message will be sent through one of the cables – which cable is a mystery.
4. Choose one “Leader End” and send a Morse-code type signal (pulses)
5. Have 2nd Leader now bend the middle of the cable bundle into a curve or loop
6. Demonstrate with more signaling through random cables, that the signal is still delivered despite the bend in the cable. The direction of light is manipulated.
7. Make sure each family sees their end light up.

Explanation:

- Similar to the Water Tank, light can be guided/trapped in plastic fibers. Called a “Waveguide” in general (guiding light waves)
- Can use optical fiber to guide light anywhere!
- Our internet/data is sent using pulses of light, just like Morse code.
The Activity

Jello Waveguides (10 min)

Materials

Per Family:

1. One Laminated placemat/grid
2. A square piece of gelatin (mix: concentrated 4x)
3. Red Laser pointer — *Make sure we get these back!*
4. Protective goggles
5. Plastic knife

To Do:

1. Pass out trays of materials — *COUNT the number of Lasers given out!*
2. Deliver warning regarding safe use of laser pointers

RULES

1. Lasers must always be angled DOWN/horizontal – never point up!
2. If the pointers are shone towards people’s faces, the pointers will be given to the responsible parent.
3. All pointers will be returned – leaders will COUNT the number of pointers they give out, and ensure all are returned.

3. Explain that we can use the gelatin as a waveguide,
 - Lead families to experiment with the laser pointer and the gelatin piece.
 - Have them note how the light travels through the gelatin and when internal reflection occurs.

4. **Challenge:** Make the light bend 180 degrees (back towards them).
 - Families can cut the piece with the knives to experiment with the process.

Example Challenge Solution

There are many solutions!
The Jello-Waveguides show us how we can make light go where we want it to.

Fiber-Optic networks use Microchips that guide light using Waveguides – we can guide light in very small areas using waveguides.

Troubleshooting / Extra Notes

- **Fiber Optic**: Position of fiber in the Laser Pointer end can make the guiding turn on/off. Move the fiber tip around in the pointer’s end.

- **Jello**: If groups finish their Jello-Challenge early, ask them to make it even smaller. (Eg. turn the light around in a smaller area) Even just a small triangle can bend the light 180°
Quick Bites

Total internal reflection (TIR) is the phenomenon that involves the reflection of all the incident light off the boundary. TIR only takes place when both of the following two conditions are met:

- the light is in the more dense medium and approaching the less dense medium.
- the angle of incidence is greater than the so-called critical angle.

Total internal reflection will not take place unless the incident light is traveling within the more optically dense medium towards the less optically dense medium. TIR will happen for light traveling from water towards air, but it will not happen for light traveling from air towards water. TIR occurs because the angle of refraction reaches a 90-degree angle before the angle of incidence reaches a 90-degree angle.

From: http://www.physicsclassroom.com/class/refrn/Lesson-3/Total-Internal-Reflection

Another Quick Bite

A fiber-optic cable is made up of incredibly thin strands of glass or plastic known as optical fibers; one cable can have as few as two strands or as many as several hundred. Each strand is less than a tenth as thick as a human hair and can carry something like 25,000 telephone calls, so an entire fiber-optic cable can easily carry several million calls.

Fiber-optic cables carry information between two places using entirely optical (light-based) technology. Suppose you wanted to send information from your computer to a friend’s house down the street using fiber optics. You could hook your computer up to a laser, which would convert electrical information from the computer into a series of light pulses. Then you’d fire the laser down the fiber-optic cable. After traveling down the cable, the light beams would emerge at the other end. Your friend would need a photoelectric cell (light-detecting component) to turn the pulses of light back into electrical information his or her computer could understand.

Photo: A section of 144-strand fiber-optic cable. Each strand is made of optically pure glass and is thinner than a human hair. Picture by Tech. Sgt. Brian Davidson, courtesy of US Air Force.
So the whole apparatus would be like a really neat, hi-tech version of the kind of telephone you can make out of two baked-bean cans and a length of string!
Light travels down a fiber-optic cable by bouncing repeatedly off the walls. Each tiny photon (particle of light) bounces down the pipe like a bobsleigh going down an ice run. Now you might expect a beam of light, traveling in a clear glass pipe, simply to leak out of the edges. But if light hits glass at a really shallow angle (less than 42 degrees), it reflects back in again—as though the glass were really a mirror. This phenomenon is called total internal reflection. It's one of the things that keeps light inside the pipe.

Artwork: Right: Total internal reflection keeps light rays bouncing down the inside of a fiber-optic cable.
The other thing that keeps light in the pipe is the structure of the cable, which is made up of two separate parts. The main part of the cable—in the middle—is called the core and that's the bit the light travels through. Wrapped around the outside of the core is another layer of glass called the cladding. The cladding's job is to keep the light signals inside the core. It can do this because it is made of a different type of glass to the core. (More technically, the cladding has a lower refractive index.)

Optical fibers carry light signals down them in what are called modes. That sounds technical but it just means different ways of traveling: a mode is simply the path that a light beam follows down the fiber. One mode is to go straight down the middle of the fiber. Another is to bounce down the fiber at a shallow angle. Other modes involve bouncing down the fiber at other angles, more or less steep.

The simplest type of optical fiber is called single-mode. It has a very thin core about 5-10 microns (millionths of a meter) in diameter. In a single-mode fiber, all signals travel straight down the middle without bouncing off the edges (red line in diagram). Cable TV, Internet, and telephone signals are generally carried by single-mode fibers, wrapped together into a huge bundle. Cables like this can send information over 100 km (60 miles).

Another type of fiber-optic cable is called multi-mode. Each optical fiber in a multi-mode cable is about 10 times bigger than one in a single-mode cable. This means light beams can travel through the core by following a variety of different paths (purple, green, and blue lines)—in other words, in multiple different modes. Multi-mode cables can send information only over relatively short distances and are used (among other things) to link together.

From: http://www.explainthatstuff.com/fiberoptics.html